The analyst function is dead

8 09 2011

The role of the operational analyst has moved from the business into both Finance and into IT.  The Finance team typically focuses only upon the financial outcomes of the business and has left the operational side of the business to the IT team.

Here is a conversation a client of mine recently had with their analyst…

ANALYST: ” Here is the report on units sold this year.”

BUSINESS:  “What happened here?”

ANALYST:  “That is a spike in the data.”

BUSINESS:  “Right.  But what happened?”

ANALYST:  “That is what the data is showing.”

Sadly, this is not uncommon in the business world today.  Billions of dollars are spent every year on Business Intelligence software to help us visualize what is happening within the business, yet we are really no better off in terms of insight.

WHY is this happening?

  1. The biggest reason why this is happening is we have changed the role of the analyst.  It used to be a marketing person looking at marketing data, or operations looking at manufacturing information.  We have now moved that role to IT, or IT has promised that that can do it better with their understanding of data structures.
  2. We have wrongly assumed that a picture is worth a thousand words.  In BI terms, a chart is worth a handful of questions. IT can not predict that next series of questions and is then left to prioritize what questions to tackle next.
  3. The pace of business, or at least the pace and variety of business questions (like the data we collect) has risen exponentially and scaled faster than our ability to respond.
  4. IT is over burdened and lacks the political power and will to say “no.”  They are in complete reaction mode and lack the resources to cover the demand.

WHAT can we do to fix this?

  • First off, we need to understand the analytical gap within the organization.  IT can manage the data and needs to partner with the business, but the business needs to own the intelligence.  It is easier to teach the business a little about technology, than teach the IT resources about the business.  The business side needs to find that type of person who understands a little about technology, but has a solid mathematical or statistical mind with a curiosity about improving the business.
  • The organization needs to find a better way to integrate better analysis back into the management process.  We need to give the analysts a frame of reference in which to explore ideas and present results.  Some of this will follow reporting upon weekly/monthly operational outcomes, while most will likely by ad-hoc hypothesis or what-if scenarios about some aspect of the business.
  • The culture has to reward critical thinking.  This is not true in most corporate cultures.  All to often, the analyst is criticized for not “going along” with the current belief.  If the culture does not reward new thinking, then the analysis will quickly fall in line with visualizations that support the status quo.
  • Invest in tools and training beyond just the core cubes and reports of the BI market.  While a good portion of analysis can be done with Microsoft Excel and a data dump, the more we want out of our analysts, the more we need to give them.  We need them to look at market baskets, threshold containment, frequency curves, optimization models, assumption testing, correlations, and many other types of analytical tools.

 

Advertisements




Visualization Methods

14 10 2010

I thought this was worth sharing….Periodic Table of Visualization Methods.  This is a nice visualization of the different types of visualization.  It shows some good examples, and some not so good examples of visualization. Make sure you mouse over the different elements.

Rules of visualization designed to create action:

  1. Keep it simple, clear, and concise – with the emphasis on simple.  Don’t use complex charts to explain simple ideas.
  2. Know your audience.  Don’t present glorious details of each step in the analytical process to executives – trust me, they don’t care.
  3. Find a chart style that works well with the data.  Line charts show historical trending, bars charts do a better job of showing relativity.
  4. Don’t use 10 charts when 1 could suffice.
  5. Label well.  Take the time to make sure all of the information is explained.  The last thing you want to happen is for someone to look at it and say “what does it mean?”
  6. Understand there is a difference in analysis and presentation.  If you are trying to convince someone to act, then make sure the data (and you) tell the story.
  7. Start with the big picture, then explain (if necessary) how you got there.  People learn by seeing the picture first, then seeing how the parts go together.
  8. Document your assumptions.
  9. Explain your conclusions, don’t expect your audience to jump to the same answer.
  10. Highlight the relevant points within the data that augment your argument – use a color scheme that calls out the item if you can (red bars vs gray).  Do not be afraid to use the power of a printed report and some hand written notes with arrows to the corresponding areas.
  11. Understand where and why the data does not support your conclusions.  Be prepared to defend against those points, because your audience will likely be looking for ways to contest your conclusions.
  12. Practice what you want to say.  The more proficient you sound the more convincing you will be.




Advanced Analytics

22 03 2010

A major item organizations grapple with is the concept of advanced analytics.  They want it, but have little idea how to use the various tools to make it happen.  Unfortunately too much information often blurs the lines.

For example, I watched a sales presentation on Predictive Analytics where the key outcome showed how to build databases with the tool yet almost completely missed the fact that the real benefit should have been something like “we were able identify two segments to target a marketing program for more effectiveness.  Instead of spending $500k on a generic campaign we were able to identify key attributes that drove increased customer interaction and focus the campaign to only $200k on those segments.”

Why is this? The primary reason is we do not truly understand the tools and how best to use them.  A Swiss army knife is not good for home repair, but is the perfect tool to throw in a hockey bag, or car trunk for occasional use as a widget to get you out of a jam – a screw needs to be tightened, a shoelace needs to be cut, or an apple peeled.  We need to understand which tool to use in the most appropriate situation instead of thinking of various tools as universal.

Business Intelligence, Planning, What-If Scenario Tools, Optimization, Dashboarding, Scorecarding, Cubes, Cluster Analysis, Predictive Analytics are all different tools for vastly separate purposes yet have similar uses.

Advanced Analytical Tools

Here are the core elements of Advanced Analytical tools:

  • Business Intelligence – great for creating an enterprise-wide, data visualization platform.   If you do this right, you should create a single version of the truth for various terms within an organization.  It should enable better reporting consistency standards for the organization.  In the end, it reports what the data says.
    • Scorecard & Dashboards – These are primarily BI tools that have a more organized or structured methodology for presenting ideally the Key Performance Indicators.  These are great tools, but to be most effective, they need a specific purpose that is highly integrated into a management process.
  • Enterprise Scenario Planning – Most enterprise planning exercises are giant what-if scenarios that try to plan out financial outcomes based on a series of drivers (employees, widgets, sales reps, etc.).  We build out plans based on a number of assumptions, like the average sales rep drives $2mil in business, or benefit costs for the year are going to be #of employees * average salary * 2.  We do this primarily to lay out a game plan for the year and we do it as part of an annual or rolling cycle.
  • Tactical or Ad-Hoc What-if Scenario Analysis – Besides the full scale project we do to plan out the company’s cash outlays, we also do a significant amount of smaller, typically tactical “what-if” scenario tests.  This is traditionally done in Microsoft Excel.  We dump a bit of data into excel, make a number of assumptions and try to build out likely scenarios.  For example, “if we were to create a customer loyalty program, what would be the cost and a likely reward.”  We are doing this to test ideas, so yes it might be ideal to bolt those into the Enterprise planning tool, but it typically takes too much overhead.  It is easier to just get something done quickly, then make a go/no go decision.
    • Data Visualization can also be a great help with this – to bolt on a couple of reports to see the data and how different scenarios impact the various facts and dimensions.  This can help us with our conclusions and recommendations.
  • Predictive Analytics – This tool is best used when we have historical data, or representative data set and we want to make a conclusion based on mathematics.   The key is math.  This is not guessing, it is improving the chances of being right with math, or a structured approach to remove risk from decision making.  With a planning tool, we primarily use assumptions to create plans.  We cannot use predictive analytics for all decisions, but for a few specific types of decisions:
    • What transaction details and customer insight can we use to determine credit card fraud?
    • What customer attributes create our buying segments?
    • Which customers are most likely to abandon our offering?
    • What products are most often purchased together?
    • Which taxpayers most likely need to be audited?
  • Optimization Analytics – This is perhaps the most specific advanced analytics tool when looking to solve the specific business question: “With the given parameters of these trade-offs, which mix of resources creates the most effective (or efficient) use of those resources?” This helps make decisions around production locations and product investment.  Like predicative analytics, it is mathematically based (though you may need to make a couple of assumptions as well) in how it determines the answer.

Advanced Analysts

Another reason we lack understanding is analysts.  Our analysts are commonly from the IT team, trained in data structures, or from the finance team, trained in accounting.  Neither is wrong, they just have a default mindset that falls back on using the tool they best know.  This lacks the business/statistical trained person who can both layout the hypothesis and, more importantly, explain the results.

We do not want correlation explained in R-squared values, “63% of the variation of the data is explained by our independent variables.”  While this may make sense to other statisticians and mathematicians, it is lost on the business.   One key value of using a math-based concept is that the explanation should sound more like, “We have found a way to decrease fraud by 3.2%, which should result in a $576K return to the business every quarter” or “We have tested our marketing campaigns and have found three segments that are 25% more likely to purchase based on the campaign, which should result in a payback period of 3 months.”

The right tool with the right skill set is imperative to successfully using advanced analytics.  We also need the discipline to have the right people using the right tools for the right information to drive action.  If you have an algorithm that predicts customer defection, you need to use it and test the results.  It is never going to be perfect, but in most cases, you can bet it will be better than not using it at all.